Concepts of Event Reconstruction

Mark M. Ito

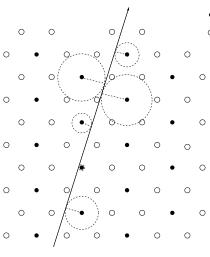
August 3, 2007

Directly Detectable Particles

- ▶ electrons, positrons: e^{\pm} , lightest charged lepton
- ightharpoonup photons: γ , gauge boson for electromagnetic force
- pions: π^{\pm} , lightest mesons
- ▶ kaons: K^{\pm} , K_L , lightest strange mesons
- protons: p, lightest charged baryon
- neutrons: n, lightest baryon
- ▶ nuclei: He, C, PB, etc.

Detectable because relatively long-lived, something inhibits decay in each case.

Particle Properties


- charged/neutral: feel EM force?
- strongly interacting: hadrons, e. g., mesons, baryons, pentaquarks
- massive/massless
- showering (electromagnetic or hadronic): energy >> mass, significant interaction cross-section
- four-momentum: E, \vec{p}
- polarization/spin

Particle Detectors

Detector	Enabling Property	Measured Property
Drift Chambers	charged	position
Time-of-Flight Counters	charged	transit time
Shower Counters	showering	energy
Cerenkov Counters	charged	velocity

Drift Chambers

- Charged particles only
- Measurement of drift time
 - Time-to-digital converter (TDC) for time measurement
 - ▶ Time of first detected ionization used
 - Convert to a drift distance
 - known distance-to-time relation
 - drift velocity $\approx 5 \text{ cm}/\mu\text{s}$
 - Position measurement in one dimension
 - ▶ ↓ to wire ← electron drift direction
 - ▶ ⊥ to particle trajectory ← point of closet approach detected

- anode wire
- o cathode wire

- With magnetic field get momentum
 - Lorentz force

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

where \vec{F} is force, q is charge, \vec{E} is electric field, \vec{v} is velocity, \vec{B} is magnetic field, SI units

- magnetic bending does no work: no energy loss
- radius of curvature proportional to momentum

$$p_{\perp} = (0.3)BR$$

where p_{\perp} is momentum transverse to field, B is magnetic field in Tesla, R is radius of curvature in meters

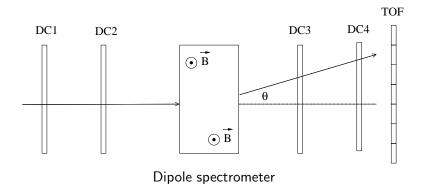
only get component of momentum transverse to field

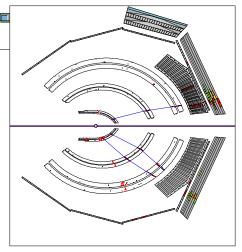
- Turn into a trajectory
 - Trial trajectory, with parameters
 - ► Field-free: straight line
 - Uniform magnetic field: helix
 - Non-uniform magnetic field: launch parameters, then solve differential equation (numerically)
 - ▶ In a magnetic field: 5 parameters
 - ▶ 3 components of momentum: p_x , p_y , p_z
 - 2 coordinates of "origin": "x₀", "y₀"
 - Least-squares fit
 - vary parameters, get different trajectories
 - minimize

$$\chi^2 = \sum_{i} \left(\frac{x_{\text{meas},i} - x_{\text{traj},i}}{\sigma_i} \right)^2$$

errors from known measurement error of chamber

- Error from multiple Coulomb scattering
 - elastic scattering from Coulomb field of atomic nuclei
 - ▶ little loss of energy
 - many small changes of direction
 - Kalman filter: weight hits in presence of correlation
- Error from energy loss
 - inelastic scattering from atomic electrons
 - correction requires good knowledge of configuration of material
 - introduces significant complication in algorithm
 - largest corrections often come from material in front of chamber

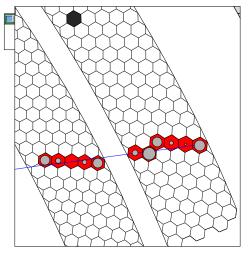

- ► Dipole magnet example
 - small angle approximation
 - $ightharpoonup p_t$ kick (momentum transverse to field direction)


$$\Delta p_t = (0.3)BI$$

where I is distance traveled in field, independent of momentum

- $\theta \approx \Delta p_t/p_t$
- resolution in momentum:

$$\frac{\sigma_{p_t}}{p_t} \propto \frac{p_t \sigma_x}{BI}$$



CLAS Detector, side view

ced[marki] Tue Mar 16 17:59:48 2004 Run_41163_Event_452426.ps

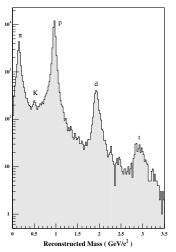
Region 3 Drift Chambers, axial and stereo superlayers

ced[marki] Wed Mar 17 07:50:54 2004 Run_41163_Event_452426.ps

Time-of-Flight Counters

- Charged particles (usually)
- Measures "end" of propagation time
- Gives velocity if start time and trajectory is known
- ▶ Gives mass if momentum is known as well

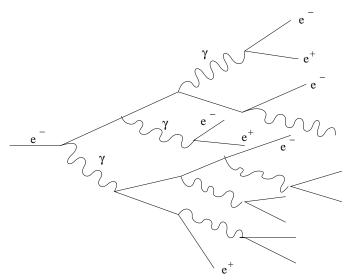
$$p = \gamma \beta mc$$


$$\gamma = \sqrt{\frac{1}{1 - \beta^2}}$$

$$\beta = \frac{v}{c}$$

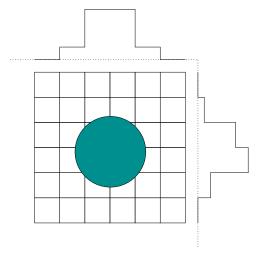
where m is the rest mass of the particle

- ► E. g., pion vs. kaon
 - $m_{\pi^+} = 140 \; {\rm MeV}/c^2$
 - $m_{K^+} = 494 \text{ MeV}/c^2$



CLAS drift chamber and time-of-flight particle identification

Shower Counters


- ► Electromagnetic shower
 - electrons and positrons bremsstrahlung photons
 - nuclear Coulomb field
 - photons produce electron positron pairs
 - nuclear Coulomb field
 - cascade, tree-like effect
 - ▶ length scale set by material's radiation length, X_0
- Hadronic shower
 - hadrons interact producing hadrons
 - nuclear strong interaction
 - ▶ length scale set by material's interaction length, λ_I

Electromagnetic shower

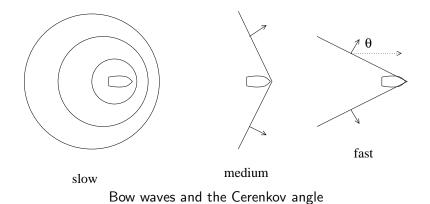
- Shower properties
 - Charged particles create a signal
 - Exponential increase in number of particles initially
 - Shower dies as particles lose energy
 - ▶ Most of charged particles created "deep" into shower
- Energy measurement
 - ▶ Sum signals from all charged particles (E&M: e^{\pm}) in shower
 - Sum proportional to energy of original particle
 - $ightharpoonup E_{
 m incident} \propto N_{e^{\pm}}$
 - ▶ Signal $\propto N_{e^{\pm}}$
 - resolution $\sigma_E \propto \sqrt{E}$
- Position measurement
 - Detector position known
 - ▶ If signal shared between adjacent modules
 - Compare relative signal
 - Interpolate position

Position determination for a shower counter

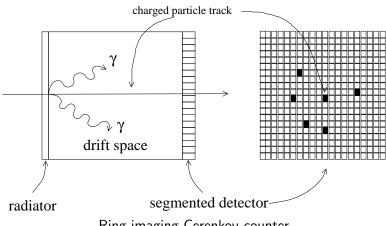
Cerenkov Counters

- Principle of operation
 - Light emitted when charged particle moves faster than speed of light in a medium.

$$v>\frac{c}{n}$$


where c is speed of light, n is index of refraction in medium

Light emitted at a characteristic angle from trajectory


$$\theta_C = \arccos \frac{c}{nv}$$

where θ_C is the half-angle of cone of emission (Cerenkov angle)

- Threshold
 - Fast? Yes or no answer.
 - ► E. g., electron vs. pion
- Differential
 - ▶ Given trajectory, measure angle
 - ► Gives velocity, quantitatively

Ring-imaging Cerenkov counter

Summary: Correlating the Detectors

	Drift Chamb.	TOF	Shower Cntr.	Cerenkov
electrons	\vec{p} , \vec{r}		E, r	
photons			E, r	
pions	\vec{p} , \vec{r}	ID		ID
kaons	\vec{p} , \vec{r}	ID		ID
protons	\vec{p} , \vec{r}	ID		ID
neutrons		ID	\vec{r}	

Multiple detector elements are used in concert to identify particles and measure their kinematic properties.